Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3264, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627405

RESUMEN

A long-standing challenge in bioinspired materials is to design and synthesize synthetic materials that mimic the sophisticated structures and functions of natural biomaterials, such as helical protein assemblies that are important in biological systems. Herein, we report the formation of a series of nanohelices from a type of well-developed protein-mimetics called peptoids. We demonstrate that nanohelix structures and supramolecular chirality can be well-controlled through the side-chain chemistry. Specifically, the ionic effects on peptoids from varying the polar side-chain groups result in the formation of either single helical fiber or hierarchically stacked helical bundles. We also demonstrate that the supramolecular chirality of assembled peptoid helices can be controlled by modifying assembling peptoids with a single chiral amino acid side chain. Computational simulations and theoretical modeling predict that minimizing exposure of hydrophobic domains within a twisted helical form presents the most thermodynamically favorable packing of these amphiphilic peptoids and suggests a key role for both polar and hydrophobic domains on nanohelix formation. Our findings establish a platform to design and synthesize chiral functional materials using sequence-defined synthetic polymers.


Asunto(s)
Peptoides , Peptoides/química , Aminoácidos
2.
Nat Nanotechnol ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570702

RESUMEN

Biological evolution has led to precise and dynamic nanostructures that reconfigure in response to pH and other environmental conditions. However, designing micrometre-scale protein nanostructures that are environmentally responsive remains a challenge. Here we describe the de novo design of pH-responsive protein filaments built from subunits containing six or nine buried histidine residues that assemble into micrometre-scale, well-ordered fibres at neutral pH. The cryogenic electron microscopy structure of an optimized design is nearly identical to the computational design model for both the subunit internal geometry and the subunit packing into the fibre. Electron, fluorescent and atomic force microscopy characterization reveal a sharp and reversible transition from assembled to disassembled fibres over 0.3 pH units, and rapid fibre disassembly in less than 1 s following a drop in pH. The midpoint of the transition can be tuned by modulating buried histidine-containing hydrogen bond networks. Computational protein design thus provides a route to creating unbound nanomaterials that rapidly respond to small pH changes.

3.
Langmuir ; 40(17): 8791-8805, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38597920

RESUMEN

Classical theories of particle aggregation, such as Derjaguin-Landau-Verwey-Overbeek (DLVO), do not explain recent observations of ion-specific effects or the complex concentration dependence for aggregation. Thus, here, we probe the molecular mechanisms by which selected alkali nitrate ions (Na+, K+, and NO3-) influence aggregation of the mineral boehmite (γ-AlOOH) nanoparticles. Nanoparticle aggregation was analyzed using classical molecular dynamics (CMD) simulations coupled with the metadynamics rare event approach for stoichiometric surface terminations of two boehmite crystal faces. Calculated free energy landscapes reveal how electrolyte ions alter aggregation on different crystal faces relative to pure water. Consistent with experimental observations, we find that adding an electrolyte significantly reduces the energy barrier for particle aggregation (∼3-4×). However, in this work, we show this is due to the ions disrupting interstitial water networks, and that aggregation between stoichiometric (010) basal-basal surfaces is more favorable than between (001) edge-edge surfaces (∼5-6×) due to the higher interfacial water densities on edge surfaces. The interfacial distances in the interlayer between aggregated particles with electrolytes (∼5-10 Å) are larger than those in pure water (a few Ångströms). Together, aggregation/disaggregation in salt solutions is predicted to be more reversible due to these lower energy barriers, but there is uncertainty on the magnitudes of the energies that lead to aggregation at the molecular scale. By analyzing the peak water densities of the first monolayer of interstitial water as a proxy for solvent ordering, we find that the extent of solvent ordering likely determines the structures of aggregated states as well as the energy barriers to move between them. The results suggest a path for developing a molecular-level basis to predict the synergies between ions and crystal faces that facilitate aggregation under given solution conditions. Such fundamental understanding could be applied extensively to the aggregation and precipitation utilization in the biological, pharmaceutical, materials design, environmental remediation, and geological regimes.

4.
Nano Lett ; 24(11): 3299-3306, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38442266

RESUMEN

Cesium lead halide nanostructures have highly tunable optical and optoelectronic properties. Establishing precise control in forming perovskite single-crystal nanostructures is key to unlocking the full potential of these materials. However, studying the growth kinetics of colloidal cesium lead halides is challenging due to their sensitivity to light, electron beam, and environmental factors like humidity. In this study, in situ observations of CsPbBr3-particle dynamics were made possible through extremely low dose liquid cell transmission electron microscopy, showing that oriented attachment is the dominant pathway for the growth of single-crystal CsPbBr3 architectures from primary nanocubes. In addition, oriented assembly and fusion of ligand-stabilized cubic CsPbBr3 nanocrystals are promoted by electron beam irradiation or introduction of polar additives that both induce partial desorption of the original ligands and polarize the nanocube surfaces. These findings advance our understanding of cesium lead halide growth mechanisms, aiding the controlled synthesis of other perovskite nanostructures.

5.
Chem Commun (Camb) ; 60(29): 3950-3953, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38498350

RESUMEN

In situ AFM observations show that when PILP droplets contact a surface, their initial properties are either a liquid with a high interfacial tension (350 mJ m-2) or a soft gel-like material with a low modulus (less than 0.2 MPa). These findings suggest that PILP may initially be liquid-like to infiltrate collagen fibrils, enabling the production of interpenetrating composites, and/or become viscoelastic, to provide a means for moulding minerals.

6.
Langmuir ; 40(8): 4350-4360, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38364791

RESUMEN

Ceria nanomaterials with facile CeIII/IV redox behavior are used in sensing, catalytic, and therapeutic applications, where inclusion of CeIII has been correlated with reactivity. Understanding assembly pathways of CeO2 nanoparticles (NC-CeO2) in water has been challenged by "blind" synthesis, including rapid assembly/precipitation promoted by heat or strong base. Here, we identify a layered phase denoted Ce-I with a proposed formula CeIV(OH)3(NO3)·xH2O (x ≈ 2.5), obtained by adding electrolytes to aqueous cerium ammonium nitrate (CAN) to force precipitation. Ce-I represents intermediate hydrolysis species between dissolved CAN and NC-CeO2, where CAN is a commonly used CeIV compound that exhibits unusual aqueous and organic solubility. Ce-I features Ce-(OH)2-Ce units, representing the first step of hydrolysis toward NC-CeO2 formation, challenging prior assertions about CeIV hydrolysis. Structure/composition of poorly crystalline Ce-I was corroborated by a pair distribution function, Ce-L3 XAS (X-ray absorption spectroscopy), compositional analysis, and 17O nuclear magnetic resonance spectroscopy. Formation of Ce-I and its transformation to NC-CeO2 is documented in solution by small-angle X-ray scattering (SAXS) and in the solid-state by transmission electron microscopy (TEM) and powder X-ray diffraction. Morphologies identified by TEM support form factor models for SAXS analysis, evidencing the incipient assembly of Ce-I. Finally, two morphologies of NC-CeO2 are identified. Sequentially, spherical NC-CeO2 particles coexist with Ce-I, and asymmetric NC-CeO2 with up to 35% CeIII forms at the expense of Ce-I, suggesting direct replacement.

7.
ACS Nano ; 18(4): 3497-3508, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38215492

RESUMEN

Two-dimensional (2D) materials have attracted intense interest due to their potential for applications in fields ranging from chemical sensing to catalysis, energy storage, and biomedicine. Recently, peptoids, a class of biomimetic sequence-defined polymers, have been found to self-assemble into 2D crystalline sheets that exhibit unusual properties, such as high chemical stability and the ability to self-repair. The structure of a peptoid is close to that of a peptide except that the side chains are appended to the amide nitrogen rather than the α carbon. In this study, we investigated the effect of peptoid sequence on the mechanism and kinetics of 2D assembly on mica surfaces using in situ AFM and time-resolved X-ray scattering. We explored three distinct peptoid sequences that are amphiphilic in nature with hydrophobic and hydrophilic blocks and are known to self-assemble into 2D sheets. The results show that their assembly on mica starts with deposition of aggregates that spread to establish 2D islands, which then grow by attachment of peptoids, either monomers or unresolvable small oligomers, following well-known laws of crystal step advancement. Extraction of the solubility and kinetic coefficient from the dependence of the growth rate on peptoid concentration reveals striking differences between the sequences. The sequence with the slowest growth rate in bulk and with the highest solubility shows almost no detachment; i.e., once a growth unit attaches to the island edge, there is almost no probability of detaching. Furthermore, a peptoid sequence with a hydrophobic tail conjugated to the final carboxyl residue in the hydrophilic block has enhanced hydrophobic interactions and exhibits rapid assembly both in the bulk and on mica. These assembly outcomes suggest that, while the π-π interactions between adjacent hydrophobic blocks play a major role in peptoid assembly, sequence details, particularly the location of charged groups, as well as interaction with the underlying substrate can significantly alter the thermodynamic stability and assembly kinetics.


Asunto(s)
Peptoides , Peptoides/química , Péptidos/química , Silicatos de Aluminio , Amidas/química
8.
Nat Commun ; 14(1): 8191, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097544

RESUMEN

Biomolecules modulate inorganic crystallization to generate hierarchically structured biominerals, but the atomic structure of the organic-inorganic interfaces that regulate mineralization remain largely unknown. We hypothesized that heterogeneous nucleation of calcium carbonate could be achieved by a structured flat molecular template that pre-organizes calcium ions on its surface. To test this hypothesis, we design helical repeat proteins (DHRs) displaying regularly spaced carboxylate arrays on their surfaces and find that both protein monomers and protein-Ca2+ supramolecular assemblies directly nucleate nano-calcite with non-natural {110} or {202} faces while vaterite, which forms first in the absence of the proteins, is bypassed. These protein-stabilized nanocrystals then assemble by oriented attachment into calcite mesocrystals. We find further that nanocrystal size and polymorph can be tuned by varying the length and surface chemistry of the designed protein templates. Thus, bio-mineralization can be programmed using de novo protein design, providing a route to next-generation hybrid materials.


Asunto(s)
Carbonato de Calcio , Nanopartículas , Carbonato de Calcio/química , Cristalización , Iones/química
9.
J Phys Chem Lett ; 14(43): 9732-9739, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37882440

RESUMEN

Achieving predictable biomimetic crystallization using sequence-defined synthetic molecules in mild conditions represents a long-standing challenge in materials synthesis. Herein we report a peptoid-based approach for biomimetic control over the formation of nanostructured ZnO materials in ambient aqueous conditions. A series of two-dimensional (2D) ZnO nanomaterials have been successfully obtained using amphiphilic peptoids with different numbers, ratios, and patterns of various hydrophilic and hydrophobic side chains. By investigating the relationship between peptoid hydrophobicity and the thickness of the resultant ZnO nanomaterials, we found the critical role of peptoid hydrophobicity in the peptoid-controlled ZnO formation. Our results suggest that tuning the hydrophobicity of peptoids can be used to moderate peptoid-ZnO surface interactions, thus controlling the formation of ultrathin (<2.5 nm) 2D ZnO nanomaterials. The peptoid-controlled formation of ZnO nanomaterials was further investigated using ultrasmall-angle X-ray scattering (USAXS). Our work suggests a new approach to synthesizing 2D metal oxide nanomaterials using sequence-defined synthetic molecules.

10.
Nat Commun ; 14(1): 6300, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813861

RESUMEN

Crystal dissolution, which is a fundamental process in both natural and technological settings, has been predominately viewed as a process of ion-by-ion detachment into a surrounding solvent. Here we report a mechanism of dissolution by particle detachment (DPD) that dominates in mesocrystals formed via crystallization by particle attachment (CPA). Using liquid phase electron microscopy to directly observe dissolution of hematite crystals - both compact rhombohedra and mesocrystals of coaligned nanoparticles - we find that the mesocrystals evolve into branched structures, which disintegrate as individual sub-particles detach. The resulting dissolution rates far exceed those for equivalent masses of compact single crystals. Applying a numerical generalization of the Gibbs-Thomson effect, we show that the physical drivers of DPD are curvature and strain inherently tied to the original CPA process. Based on the generality of the model, we anticipate that DPD is widespread for both natural minerals and synthetic crystals formed via CPA.

11.
ACS Nano ; 17(16): 15556-15567, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37556761

RESUMEN

Predicting nanoparticle aggregation and attachment phenomena requires a rigorous understanding of the interplay among crystal structure, particle morphology, surface chemistry, solution conditions, and interparticle forces, yet no comprehensive picture exists. We used an integrated suite of experimental, theoretical, and simulation methods to resolve the effect of solution pH on the aggregation of boehmite nanoplatelets, a case study with important implications for the environmental management of legacy nuclear waste. Real-time observations showed that the particles attach preferentially along the (010) planes at pH 8.5 and the (101) planes at pH 11. To rationalize these results, we established the connection between key physicochemical phenomena across the relevant length scales. Starting from molecular-scale simulations of surface hydroxyl reactivity, we developed an interfacial-scale model of the corresponding electrostatic potentials, with subsequent particle-scale calculations of the resulting driving forces allowing successful prediction of the attachment modes. Finally, we scaled these phenomena to understand the collective structure at the aggregate-scale. Our results indicate that facet-specific differences in surface chemistry produce heterogeneous surface charge distributions that are coupled to particle anisotropy and shape-dependent hydrodynamic forces, to play a key role in controlling aggregation behavior.

12.
J Am Chem Soc ; 145(31): 17427-17434, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37523747

RESUMEN

The layered 2D van der Waals ferromagnets CrX3 (X = Cl, Br, I) show broad d-d photoluminescence (PL). Here we report preparation, structural characterization, and spectroscopic studies of all three CrX3 compounds doped with the optical impurity, Yb3+. EXAFS measurements show very similar Cr K-edge and Yb L-edge data for each doped compound, and good fits of the latter are obtained for structures having Yb3+ occupying substitutional octahedral sites. Yb-X bond lengths are systematically ∼0.25 Å larger than their Cr-X counterparts. 4 K PL measurements show efficient sensitization of Yb3+ luminescence upon photoexcitation into lattice absorption bands [Cr3+ d-d and ligand-to-metal charge-transfer (LMCT)] for all three compounds, converting their nondescript broadband d-d PL into sharp f-f emission. The PL of CrCl3:Yb3+ and CrBr3:Yb3+ occurs at energies typical for [YbX6]3- with these halides, with PL decay times of 0.5-1.0 ms at 4 K, but CrI3:Yb3+ displays anomalously low-energy Yb3+ emission and an unusually short PL decay time of only 8 µs at 4 K. Data analysis and angular overlap model (AOM) calculations show that Yb3+ in CrI3:Yb3+ has a lower spin-orbit splitting energy than reported for any other Yb3+ in any other compound. We attribute these observations to exceptionally high covalency of the Yb3+ f orbitals in CrI3:Yb3+ stemming primarily from the shallow valence-shell ionization potentials of the iodide anions.

13.
Angew Chem Int Ed Engl ; 62(28): e202303770, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37145989

RESUMEN

Hierarchical nucleation pathways are ubiquitous in the synthesis of minerals and materials. In the case of zeolites and metal-organic frameworks, pre-organized multi-ion "secondary building units" (SBUs) have been proposed as fundamental building blocks. However, detailing the progress of multi-step reaction mechanisms from monomeric species to stable crystals and defining the structures of the SBUs remains an unmet challenge. Combining in situ nuclear magnetic resonance, small-angle X-ray scattering, and atomic force microscopy, we show that crystallization of the framework silicate, cyclosilicate hydrate, occurs through an assembly of cubic octameric Q3 8 polyanions formed through cross-linking and polymerization of smaller silicate monomers and other oligomers. These Q3 8 are stabilized by hydrogen bonds with surrounding H2 O and tetramethylammonium ions (TMA+ ). When Q3 8 levels reach a threshold of ≈32 % of the total silicate species, nucleation occurs. Further growth proceeds through the incorporation of [(TMA)x (Q3 8 )⋅n H2 O](x-8) clathrate complexes into step edges on the crystals.

14.
Proc Natl Acad Sci U S A ; 120(23): e2101243120, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252978

RESUMEN

Iron-based redox-active minerals are ubiquitous in soils, sediments, and aquatic systems. Their dissolution is of great importance for microbial impacts on carbon cycling and the biogeochemistry of the lithosphere and hydrosphere. Despite its widespread significance and extensive prior study, the atomic-to-nanoscale mechanisms of dissolution remain poorly understood, particularly the interplay between acidic and reductive processes. Here, we use in situ liquid-phase-transmission electron microscopy (LP-TEM) and simulations of radiolysis to probe and control acidic versus reductive dissolution of akaganeite (ß-FeOOH) nanorods. Informed by crystal structure and surface chemistry, the balance between acidic dissolution at rod tips and reductive dissolution at rod sides was systematically varied using pH buffers, background chloride anions, and electron beam dose. We find that buffers, such as bis-tris, effectively inhibited dissolution by consuming radiolytic acidic and reducing species such as superoxides and aqueous electrons. In contrast, chloride anions simultaneously suppressed dissolution at rod tips by stabilizing structural elements while promoting dissolution at rod sides through surface complexation. Dissolution behaviors were systematically varied by shifting the balance between acidic and reductive attacks. The findings show LP-TEM combined with simulations of radiolysis effects can provide a unique and versatile platform for quantitatively investigating dissolution mechanisms, with implications for understanding metal cycling in natural environments and the development of tailored nanomaterials.

15.
Nano Lett ; 23(10): 4290-4297, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37141413

RESUMEN

Supramolecular structures of matrix proteins in mineralizing tissues are known to direct the crystallization of inorganic materials. Here we demonstrate how such structures can be synthetically directed into predetermined patterns for which functionality is maintained. The study employs block copolymer lamellar patterns with alternating hydrophilic and hydrophobic regions to direct the assembly of amelogenin-derived peptide nanoribbons that template calcium phosphate nucleation by creating a low-energy interface. Results show that the patterned nanoribbons retain their ß-sheet structure and function and direct the formation of filamentous and plate-shaped calcium phosphate with high fidelity, where the phase, amorphous or crystalline, depends on the choice of mineral precursor and the fidelity depends on peptide sequence. The common ability of supramolecular systems to assemble on surfaces with appropriate chemistry combined with the tendency of many templates to mineralize multiple inorganic materials implies this approach defines a general platform for bottom-up-patterning of hybrid organic-inorganic materials.


Asunto(s)
Biomimética , Nanotubos de Carbono , Polímeros/química , Minerales , Fosfatos de Calcio/química , Péptidos/química
16.
Biomacromolecules ; 24(6): 2618-2632, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37141445

RESUMEN

Peptoids (N-substituted glycines) are a group of highly controllable peptidomimetic polymers. Amphiphilic diblock peptoids have been engineered to assemble crystalline nanospheres, nanofibrils, nanosheets, and nanotubes with biochemical, biomedical, and bioengineering applications. The mechanical properties of peptoid nanoaggregates and their relationship to the emergent self-assembled morphologies have been relatively unexplored and are critical for the rational design of peptoid nanomaterials. In this work, we consider a family of amphiphilic diblock peptoids consisting of a prototypical tube-former (Nbrpm6Nc6, a NH2-capped hydrophobic block of six N-((4-bromophenyl)methyl)glycine residues conjugated to a polar NH3(CH2)5CO tail), a prototypical sheet-former (Nbrpe6Nc6, where the hydrophobic block comprises six N-((4-bromophenyl)ethyl)glycine residues), and an intermediate sequence that forms mixed structures ((NbrpeNbrpm)3Nc6). We combine all-atom molecular dynamics simulations and atomic force microscopy to determine the mechanical properties of the self-assembled 2D crystalline nanosheets and relate these properties to the observed self-assembled morphologies. We find good agreement between our computational predictions and experimental measurements of Young's modulus of crystalline nanosheets. A computational analysis of the bending modulus along the two axes of the planar crystalline nanosheets reveals bending to be more favorable along the axis in which the peptoids stack by interdigitation of the side chains compared to that in which they form columnar crystals with π-stacked side chains. We construct molecular models of nanotubes of the Nbrpm6Nc6 tube-forming peptoid and predict a stability optimum in good agreement with experimental measurements. A theoretical model of nanotube stability suggests that this optimum is a free energy minimum corresponding to a "Goldilocks" tube radius at which capillary wave fluctuations in the tube wall are minimized.


Asunto(s)
Nanotubos , Peptoides , Peptoides/química , Nanotubos/química , Glicinas N-Sustituídas , Simulación de Dinámica Molecular , Glicina
17.
Biomacromolecules ; 24(3): 1078-1102, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36853173

RESUMEN

A mechanistic understanding of how macromolecules, typically as an organic matrix, nucleate and grow crystals to produce functional biomineral structures remains elusive. Advances in structural biology indicate that polysaccharides (e.g., chitin) and negatively charged proteoglycans (due to carboxyl, sulfate, and phosphate groups) are ubiquitous in biocrystallization settings and play greater roles than currently recognized. This review highlights studies of CaCO3 crystallization onto chitinous materials and demonstrates that a broader understanding of macromolecular controls on mineralization has not emerged. With recent advances in biopolymer chemistry, it is now possible to prepare chitosan-based hydrogels with tailored functional group compositions. By deploying these characterized compounds in hypothesis-based studies of nucleation rate, quantitative relationships between energy barrier to crystallization, macromolecule composition, and solvent structuring can be determined. This foundational knowledge will help researchers understand composition-structure-function controls on mineralization in living systems and tune the designs of new materials for advanced applications.


Asunto(s)
Quitosano , Quitosano/química , Carbonato de Calcio/química , Cristalización , Quitina/química , Sustancias Macromoleculares
18.
Langmuir ; 39(8): 2985-2994, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36787496

RESUMEN

Oriented attachment (OA) of nanoparticles is an important pathway of crystal growth, but there is a lack of tools to model OA. Here, we present several simple models that relate the probability of achieving OA to basic geometric parameters, such as particle size, shape, and lattice periodicity. A Moiré-domain model is applied to understand twist misorientations between parallel surfaces, and it predicts that the range of twist angles yielding perfect OA is inversely related to the width of the contact area. This idea is explored further through a surface functional model, which investigates how patterns of crystallographic registration can drive the emergence of complex orientational energy landscapes. The energy landscapes are predicted to possess multiple local minima that can trap particles in imperfect alignments, and these local minima become deeper and more numerous as the contact area increases, which makes OA more challenging for large particles. A second set of models is presented to understand the sequence of events by which two crystallographic faces become coplanar after the collision. We use a central force approximation to predict the odds that two particle faces will attain coalignment when the particles collide with random misalignments, and we show that in the absence of special biasing forces, the probability of attaining alignment on a given face is roughly proportional to its solid angle as viewed from the center of the particle. The model thus predicts that OA is most favorable between well-faceted particles and becomes exceedingly unlikely for large spherical particles that express many microfacets.

19.
Small ; 19(21): e2206810, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36811318

RESUMEN

Robust and cost-effective membrane-based separations are essential to solving many global crises, such as the lack of clean water. Even though the current polymer-based membranes are widely used for separations, their performance and precision can be enhanced by using a biomimetic membrane architecture that consists of highly permeable and selective channels embedded in a universal membrane matrix. Researchers have shown that artificial water and ion channels, such as carbon nanotube porins (CNTPs), embedded in lipid membranes can deliver strong separation performance. However, their applications are limited by the relative fragility and low stability of the lipid matrix. In this work, we demonstrate that CNTPs can co-assemble into two dimension (2D) peptoid membrane nanosheets, opening up a way to produce highly programmable synthetic membranes with superior crystallinity and robustness. A combination of molecular dynamics (MD) simulations, Raman spectroscopy, X-ray diffraction (XRD), and atomic force microscopy (AFM) measurements to verify the co-assembly of CNTP and peptoids are used and show that it does not disrupt peptoid monomer packing within the membrane. These results provide a new option for designing affordable artificial membranes and highly robust nanoporous solids.


Asunto(s)
Nanotubos de Carbono , Peptoides , Nanotubos de Carbono/química , Porinas/química , Peptoides/química , Biomimética , Lípidos , Agua/química
20.
J Colloid Interface Sci ; 634: 450-459, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36542974

RESUMEN

In the biological environment, mineral crystals exquisitely controlled by biomacromolecules often show intricate hierarchical structures and superior mechanical properties. Among these biominerals, spicules, hybrid silica/protein superstructures serving as skeletal elements in demosponges, represent an excellent example for motivating the synthesis of silica materials. Herein, by designing sequence-defined peptoids containing side chains with a strong binding to silica, we demonstrated that self-assembly of these peptoids into fiber structures enables the mimicking of both biocatalytic and templating functions of silicatein filaments for the formation of silica fibers at near-neutral pH and ambient temperature. We further showed that the presence of amino groups is significant for the nucleation of silica on self-assembled peptoid nanofibers. Molecular dynamics simulation further confirmed that having silica-binding of amino side chains is critical for self-assembled peptoid fibers in triggering silica formation. We demonstrated that tuning inter-peptoid interactions by varying carboxyl and amino side chains significantly influences the assembly kinetics and final morphologies of peptoid assemblies as scaffolds for directing silica mineralization to form silica spheres, fibers, and sheets. The formation of silica shell on peptoid fibers increased the mechanical property of peptoid hydrogel materials by nearly 1000-fold, highlighting the great potential of using silicification to enhance the mechanical property of hydrogel materials for applications including tissue engineering. Since peptoids are highly robust and programmable, we expect that self-assembly of peptoids containing solid-binding side chains into hierarchical materials opens new opportunities in the design and synthesis of highly tunable scaffolds that direct the formation of composite nanomaterials.


Asunto(s)
Nanoestructuras , Peptoides , Peptoides/química , Hidrogeles , Dióxido de Silicio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...